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LINEAR THEORY OF MICROPOIAR VISCOEIASTICITY

Abstiract 5 ‘ILé (l 5

The present paper is concerned with the comstruction of
a2 linear theory of viscoelasticity for micropolar solids. The
constitutive equations of strain and micro-rotation rate dependent
materials, stress and couple stress rate dependent materials
and continuous memory dependent micropolar elastic solids and
fluids ere obtained a.nd the thermodynamic restrictions are
studied. An indeterminate couple stress theory is also derived

(Lo

as a special case.
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l.:. Introduction

The present paper is concerned with the development of a
theory of micropolar viscoelasticity as an extension of the
micropolar elasticity and micropolar fluids developed by Eringen
and Suhubi [1], [2] and Eringen [3] to [6]. General theories
given in [1] to [4]) are believed to have applications in the
understanding of mechanical bebavior of materials with granular
and fiberous structure and anisotropic fluids and fluids carry-
ing additives. The special theories of micropolar elasticity
and fluids [5], [6] may find their uses in a special class of
s80lid materials and fluids in which the micro-rotational motions
and inertia are important. Mechanics of fluids and solids made
of dumbbell molecules should be govermed by these theories.

The micropolar elasticity is extended here to construct
linear constitutive theories for the micropolar materials that
possess internal friction. We consider only materiasls possessing
micfoisotropy. In Section 2 we present the resume of baaic
equations of micropolar theory of elasticity and fluids. In
Sections 3 and 4 we give rate dependent theories of microvisco-
elasticity generalizing the classical V‘oigt-Kelvin theory, the
Maxwell theory and the general rate theory. Section 5 .13 devoted
to linear memory dependent micropolar materials. Thermodynamic
restrictions are studied. In Section 6 we make passage to micro-
polar viscoelastic fluids. An indeterministic couple stress \
theory is obtained as & result of constrained motion of the micro-
polar viscoelasticity (Section 7).
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2. Basic Equations of Micropolar Theory

The theories of micropolar elasticify and micropolar fluids
are based on the following balance laws, (2], [5], (6],

9p

3¢t (o vk),k « 0 (mass) (2.1)
tkl,k + p(f“ - v‘) = 0 (momentum) (2.2)

m +ec t, +p(t -3v) = 0 (moment of (2.3)
rk,r kir ir k k momentum)

pe = tkld‘lk*'ekjrtlgl (wr-vr)

+o, v‘,k + ?k,k + ph (energy) (2.4)

where
p = mass density vk = velocity vector
tk.l = stress tensor fk = body force
nﬁu = couple stress zk = body couple
4 = micro-inertis ‘ Vk = micro-rotation velocity

(gyration vector)

€ = internal energy density qk = heat vector, directed
outward the body

uk = vorticity vector. h = heat source
Throughout the paper we employ the rectangular coordinates
X (k = 1,2,3) and the cartesian tensor notation. Accordingly
the repeated indices are summed over the range (1,2,3) and the
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free indices take the values 1, 2, 3. A superposed dot indicates
the material derivative and an index following & comma the
partial differentiation, e.g.,

Ny v
v B — 4 | —
¢« T TVt s 7 Yk 3x,

The triple indexed € is the permutation symbol which has the

kér
values

€103 ™ 31 " S312 " o33 " €31 T Sy =1

otherwise zero.
In vhat follows two other vectors are introduced, the dis-

placement vector uk and the micro-rotation vector tpk « In
terms of these we have the kinematical relations

(2.5)
w L. v s = (v. ,+v, )
k 2 kfm m,2 ? dlu 2 Y k,t 2,k

The properties of micropolar materials are restricted ac-
cording to the entropy inequality

P . 1
8 - - - - -
e r g (F+n 0)+ ot + g e B (00 - V),

]
1 q'k k
= ——
+ton v‘,k-b > > 0 (2.6)

e

which is assumed to be valid for all independent processes. In
(2.6) 0 1is the temperature, m is the entropy and ¥ 1is the
free energy defined by.
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v 8 € -069q (2.7

The surface tractions 1t and surface couples acting
aty Ha)

at a point x on the surface % of the body V' + ¥ are

calculated by

t = t n ’

(a)k e = m,_n (2.8)

Equations of balance are suppiemented by the constitutive
equations appropriate to each material medium. For two such
media they are given below:

(a) Linear isotropic micropolar elasticity

tu = )‘en-su"(z“*")ekz"'(eum(rm"m) (2.9)

Mg = P p P *P R YT Py (2.10)

(b) Linear micropolar fluids

tkl = (-7 + )\vdn_) 5k£ + (2uv + Kv) dk‘ +K € (mm - vm)

(2.11)
e T % vr,r 8k£ ey Vk,l 7 Ve (2.12)
where
e e X ( +u, ) s r B 1 € u (2.13)
ke 2 %,s " Ve k 2 kfm ‘m,2

are respectively the infinitesimal strain tensor and the rotation
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vector. Eringen [5], [6] bhas shown that the new elastic moduli
A,u,Kk,a,p , 7 and viscosities )\v,uv,xv,av,sv

and 7v are subject to the restrictions

0 < 3A+2u+x s 0 < R 0 < «
(2.14)
0 < 3o+ 2y »  y<p<y , O <7
0 < 5)\v+2pv+Kv » 0 < ", ’ 0 < Kv
(2.15)
< ’ -y < < <
0 < hv‘.'a')'v P 7V—BV"'7V ) 0 < 7v

of which (2.14) 1 8 necessary and sufficient for the non-
negative internal energy and (2.15) is necessary and sufficient
for the entropy inequality (2.6) to be satisfied for all indepen-

dent processes.



General Technology Corporation

3. Micropolar Viscoelasticity Involving the Time Rate of

Strain and Micro-rotation

In this section we obtain a set of constitutive equations for
a class of linear viscoelastic materials in which stress and couple
stress depend on the strain measures, micro-rotation, micro-rotation
gradient and their first order time rates. These correspond to
the generalizations of the Kelvin-Voigt solids. A linear theory
of isotropic microelastic material may be constructed by a linear
combination of linear isotropic micropolar elasticity and micro-
polar fluids in the same manner as those of the classical Kelvin-
Voigt theory of viscoelasticity. However, we proceed through
the thermodynamical considerations.

An inspection of (2.9) to (2.12) reveals that the following
constitute a set of objective variables to construct the theory:

et ¥ et e (Tn %)

Alll = dkl + € (wm - vm) = ékt (3.1)

We define microisotropic viscoelastic solid type 1 by the fol-

lowing constitutive equations :*

tk.l - Fkl (ers’Ars’g,r,s ’ vr,s’e)

M )&d (ers ! A‘rs ’ ‘Pr,s ! vr,s » 8) (3.2)

g = B (ers’Ars"pr,s ’vr,s’e)

*
The present method can be used to obtain the genersl nonlinear
theory, provided we replace eu by the finite strain measure.

6
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t-‘{’(e;_s.An,v > Vv ;9)
ﬂ'n(ers:Ar.,¢ s V » 8)

where Fkl ’ Mkl are tensor-valued functions, Kk is vector-
valued and v and N are scalar-valued functions of the
variables listed. Note that (3.2) obeys the rule of equipresence.

Substitution of (3.2) into (2.6) gives

p % Y . 3 . 3, .
-e[ae %s* 2 Ars“'acp tpr,ﬁs'.'av vr,s"'aea
rs rs r,s r,s
qke
+v|e]+ ‘\u*euz,k"_é‘- > 0 (3.3)
e

This inequality must be satisfied for all independent variations

of the varisbles A v e, 6 A and . It
s’ r,s’ ’ ,k’ “r,s Ve, I

is linear in the first four of these variables. Hence the co-
efficients of these variables must vanish, i.e.,

o k' 4
aA B S5y 5 0 (3.4)
rs r,s
oY
n = -a-; , q'k = 0 (3.5)

The remaining terms may be arranged into

%‘“’éfl )Ak,+—(-p +mp)é 2 0 (3.6)

k£ k,l

We decompose the stress and couple stress into non-dissipative
and dissipative parts as follows:
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Yo ™ Ehase 0 B g 2 8) * ptle s %2 X’ Ve,0r ©)

(3.7

M gh(eu ’ wk,l » 0) + nmu(eu’ q’k,z’ Au’ Vk,l’ 6)

In viev of (3.4) we have
¥ =Y (ekl ’ ) > 8) (3-8)

Inequality (3.6) is linear both in - 5, @nd @k P The necessary
. b4
and sufficient condition for (3.6) to be satisfied for all possible

values of these variables is

oy
t, = p— (3.9)

_Eks aeu

i o
n._ = p (3.10)

E 2k Bq:»k’JG

and

Dkt et otk Ve 2 ° (3.11)

Hence we have proved

Theorem 1. The isotropic microviscoelastic solid defined by

(3.2) 1s thermodynamically admissible if and only if the free
energy v 1is independent of the rate variables [\u » vk

2 H
b
the stress and couple stress are given by (3.7) with their non-

dissipative perts given by (3.9) and (3.10) and the dissipative
parts satisfy the inequality (3.11).
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Theorem 2. If DI" and p® 8re continuous functions of their
argunents then they vanish with % and v 2’ i.e.,

J

D&(eu: k,‘,0,0,B) = 0
(3.12)

De(ekl’ k",o:oaa) = 0

To prove the first of these we set vk‘lo and take all
2

L\d = 0 except Al_l . Then according to (3.11) Dtll A.Ll >0.

e > . < < .
IA]lOthenDtu>O IfAnOthenDtne

Since Dtll is continuous in All then Dtll-o vhen An=0 .

The argument is the same for other ccxnpone.nts of Dtkj . To
prove (5.12)2 we follow the same method except that this time
we set Akl 20 .

Several remarks are in order:

(2) The stress and couple stress, each, are camposed of a

purely microelastic part and a dissipative part. The elastic

parts are derivable from a potential (3.9), (3.10). The dissipa-
tive energy, according to (3.11), must be non-negative.

(b) According to (3.12) the dissipative stress and couple
stress contain no purely elastic effect.

(c) The free emergy, according to (3.8), is independent of
the rates of deformations.and microdeformations.

(d) The heat vanish. This, of course, is the consequence
of not including the thermal gradients among the constitutive
variables.

Since we are dealing with the microisotropic solid the
function ¥ 1s further restricted. In fact, it must be a function
of the joint invariants of the tensors
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€ €

) 7 el 0 %) 7 Pik,e)
where a parenthesis enclosing the indices indicates the sym-
metric part and a bracket the antisymmetric part, e.g.,

e . & =
2

(ict) (s * €4

Invariants of such tensors are well-known, cf. Spencer [7], and
therefore we can construct the elastic parts of the couple stress
and the stress tensor. Since we are concermed with the linear

theory, we may proceed in a simple way as follows. Write

1
+ A = € € +
P¥ = A v A 2 Aeemn ke St Bt B,

lB €

2 Beorm Pt ®n,n ¥ Ctmn ks Pnyn
vhere Ao, kl’AkZmn’Bk!’ . . . are functions of 6 only.
Since @ is an axial vector, it can be shown that C 20

k kfmn

for otherwise upon the reflection of the material axes ¢ would
not remain invariant. For the isotropic tensors Au » 'A”klmn P

.. » we have

Agp = A8y - %zmn B0 g Bon * A% Bun t A8 B
Consequently

1
+ A € + A € € € €
oV =A +he +B L+ A S Y A S Y A

1
AU R A WA AR LW/ (3.13)

10

)
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Upon substituting this into (3.9) and (3.10) we obtain

t = B + €
Bt = AP A B YA A

(3.14)
m = BS5 _+ Bo 5 +B ©®

+
E ki ke ¥ B r Bup Y By ¥yt By g
For vanishing initiel stress and couple stress we have A =B =0 .
Upon using (3.1)l in (3.1&)1, we see that equations (3.14) go
into (2.9) and (2.10) if ve set

1 2 3
(3.15)
With these the free energy (3.13) reads
Ae  + By +l[)\e € + (p+x)e , ¢
oy “ac Y P T2V G St W e ks
(3.16)
+hre, n{]*-(cw kP tP P Pt q>k"ek,,)

or

1
pVY = Aekk+mk’k+2[7\ekkekk+(2p+x) euek‘]

(3.17)

+x(r-¢)(r-¢)+—(a¢kk 0, e Y B P Py TR 0 )

This result is identical to that given in [5] with the exception of
the initial stress terms containing A and B which were excluded

in [9]. Both D’E and B are isotropic functions. Therefore,

11
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the dissipative stress and couple stress, linear in their con-
stitutive variables, may be expressed as

% 5
phe = (B+28 8 )8 48, A +a 8, ta v o ta v,

= b
s (v +

1 vr,r) su + ‘n2 "k,z + ‘n3 v"k + bk Akl + b5 Atk
where in view of (3.12) a = b =0 and & s ‘bk are functions
of 6 only.

Since y is an axial vector while D‘I" is an absolute
tensor the condition of isotropy requires that we further set
ah = ab5 = 0 . Similarly Dlp_ is a8 relative tensor of degree 1
vhile A 1is an absolute tensor. The full isotropy condition in

this case implies that bh = b‘)' =0 . If we write

we get the constitutive equations (2.11) (excluding the pressure
term -7 ) and (2.12) of the micropolar fluids.
The thermodynamic inequality (3.11) can now be used to prove

the inequalities (2.15) (cf. [6]).

The constitutive equations of the class of viscoelastic solids

considered here are therefore given by

g M b v (e e, 2 A5, (u) A A,

(3.18)
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+ + .
Mg = O Pt PO T et O Ve Ok P st T Y (3439)

Since we are dealing with the linear theory we can further write
Bg =€ 20 V=% -

Equations (3.18) and (3.19) are the final forms of the
linear constitutive equations of this class of isotropic micro-
polar viscoelastic solids.

The basic difference of the micropolar theory from the
corresponding Kelvin-Voigt theory is apparent in two counts:

(1) BHere the stress also depends upon the micro-rotation
and microgyration and their time rates and it is not a symmetric
tensor and, of course,

(11) the couple stress is totally absent in the classical
theory.

13
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. Microviscoelesticity Involving Stress and Couple

Stress Rates

A constitutive theory of microviscoelssticity can be com-
structed generalizing the Maxwell solid of the classical theory.
Thus

9
(1+a$) tn_5

)
kl*(l+b6t) tkl = )\vArrb

ke

+ (""v + xv) Agtn Alk (4.1)

d 9
(l+p§€) nrrbu+(1+2q-a—t')mu - a vr,rskl

+B (4.2)

v vk,l *7 Vl,k
vhere a , b, p and q are functions of temperature 6 also.
Thermodynamics of the Maxwell solid has not been comstructed to
date., We do not expect to present one for the present theory.
We note here the fundamental deperture from the classical Maxwell
solid, namely the presence of couple stress and its time rate.
Further generalizations (3.18), (3.19) and (4.1), (%.2)
involving higher order time rates of t , 4, p and y are not
difficult to construct. To this end we first introduce

tkl =-p 6“ + ‘tkl

. (4.3)
Y TR P . Wi L RS A

such that

14
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p.-;tkk ’ €=-%ekk y mﬁ%mkk,
) . - (3.%)
T T T
Now write constitutive equations of the form
Pp = Q¢ ’ R‘Ek‘-sé'u-t'r;‘k
(4.5)

Fan = 8@ 7 Loy = Mo +T8e, .

vhere P, 4q4,R,S,T,F,H, ... are differential op-

erators of the form

P q
3 3
P= P(‘)_ ’ 4= (9)—" » * e . ““-6)
kZo k0 3¢E kzoq“ otk

The order of the differential operators depends on the singulari-
ties allowable in the stress and couple stress fields. The dis-
cussion of certain simple ceses, e.g., the standard solid involving
only the time rates of first order, is not difficult.
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5. Memory Dependent Linear Isotropic Micropolar Materials

Constitutive equations of micropolar materials, whose behavior
at time t is influenced by the past history of motion, can be
formulated in a similar f.ashion to those of the ¢lassical Boltzmann-
Volterra theory [8]. In view of the fact that we are dealing
with 1sotropic materials we need not distinguish the material
and spatial coordinates. Obeying the rule of equipresence the
constitutive equations of non-heat conducting, memory dependent
isotropic micropolar elastic materials may be expressed as

®
ty=F,le(x) , e () ,8(s)]

=0

-
o]
o~~~
L]
S
-

ny =N, Lo (0 L o (0) , 6 (s)]
T=O

8

g =B le (0, e () ,6(n)] (5.1)

T=0

vV =% [ers(r) y o (1) , 6 (1))

T=0

n = ¥ le () » @ (v) , 6 (1)}
tT=0

vhere the constitutive functional F 1is an absolute tensor-valued
functional of the asbsolute second order tensor function g ,

the gradient of an axial vector function @ and the absolute
scalar 6(t) in the full range T = 0 to » . The functional
Mkl is a second order axial tensor-valued function; Hk is an
absolute vector functional and ¥ and N are absolute scalar-

16
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valued functionals of the same argument functions as [ .
The invariance under the time shift implies that these

functionals are of the form

[ ]
t ™
s ™ Fis
T=0

[ers(t-f) ’ "r,s(t") » 0(t-1)] (5.2)

The requirement of form-invariance to arbitrary rigid motions
of the spatial frame of reference implies that these functionals
are isotropic. The consequence of these restrictions are studied
belov.

The axiam of thermodynemic admissibility

-] e
'e“"‘e)+a kt%t*eu £,k e2qke,k20 (5.3)

impoges restrictions on the form of the constitutive functionals.
To investigate this we introduce, for convenience, the difference
bhistories

En(-r) » ers(t -1) - em(t)
vr,s(r) . vr’s(t -1) - vr,s(t) (5.4)
o (x) ® o(t -1) - 6(x)

The constitutive equations can now be written in the form

t, = F (e O tp (%) em(t) ) lPr,s(t) » 8(t)] (5.5)

T=0

wvhere we also assumed that the temperature memory is negligible.

17
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This latter requirement can be relaxed trivially. We are in-
terested only in a linear rate theory. To avoid clumsy formalism
of functionals we assume thet the constitutive functionals are |
sufficiently smooth to allow a "power series" representation.
Thus a second order approximation to the free energy ¥ is

o= oy e (th 0 (6), 6(6)] 4 [ A (8) &, (8)as

+ jo‘ "nu(.) o ()8 + l;[ A, (s,8,) & (s ) (s))as as_
(o]

- - - (5.6)
+ B (s.,6)9 (s )e (s )is ds
6[0[ kfmn 1" 2° k,4°'1° myn 2" 1 2

+‘Z7} C,pmm(®17%5) €44(®)) i'm,n(sa) ds,ds,
oo

where Ald ’Bkl’Aklm’Bkjmn and Cumn are in general
functions of 8 , € _,(t) , ®» ,(t) and 6(t) , and
_ ks k,2

Armn(®17%) = Apnce(8208)
B (s.8) = B (s,) (5.7)
Cormn’®17%) = Comes(®0%)

are isotropic tensors. Since ¥ and g are absolute tensors
vhile @ 18 an axial vector, the form-invariance of ¥ to the
reflection of material axes requires that cklmn 80 . Now
substitute (5.6) into (5.3)

18
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oy ©
-%(%-&q)é-l-%(tu-o-a%-tpj Ak‘(s)ds
o

+ 2”4&[ Atmn(®17%) €50(8,) 8,88 ) 4,
& -
-p
o " P 3¢

+p (s)as
WRARY

v2 [[ B le0) ¥, (s)am )y |
o0

f'l {m

(5.8)

ca{t-8) e ,(t-8)

+-f [a, (s) +3_(s) ——-és———-]ds

de (t-s) de (t-a)
B i (s)) + 5 (s)

+§g) (A g (8158,) | 2]

2

(t-s_) (t-s )

+ B, (s ,8,) [—b;Tl—'p o(3,) + 8 (8)"“7.;'2—2”““2

This inequality is linear in 6 and 6 , end 1t cannot be
b
maintained for arbitrary variations of these variables unless

their coefficient wanishes, identically, i.e.

\"% ’ qk-o (5'9)

It can be shown that for any history ek‘(s) and ® ‘(l) there
2
exist sufficiently near histories eu(a) » ‘(u) such that
?
] a q ] .
eu(t) A, & k,l(t) Vk,l are arbitrary. Consequently,
the necessary and sufficient conditions for (5.8) to be valid for

all independent processes are
19
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No - n.. -
tu = p é:k-; -p\[Au(l)ds -2phé‘/o- A (11,82) Gm‘»ydlldsa (5-10)

a ®© ® e
] -
T = P >, , - "fo B, (8)as _'2" 4‘[ B aml®17%) @, ,(8,)a8 a5,
(5.11)
and
wa(t®) ® (ts)
f[A (o) —= 2 (s)——;—-——las
de (t-s)
mn 2
+ 2 f[[Ablm(B ,s)e —-—d—;a——-
. (t-sa)
+ Bkjnn(s ,82) .k ‘(s ) -—'d"';;——] dsld32 > 0 (5.12)
This last inequality ﬁrther implies that
Ak,‘ = Bkl = 0 (5'13)
%[f [am(s ,S)G (s)e (B)
o0
* Pt ®17%,) ;k,l(sl) ém,n(sl) Jas @s, 2> 0 (5.14)

vhere we used by-part integrations and wrote
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GW(BI:BE) E j; Ak‘nm(ss,sa)d‘s3

1
crma(®1%,) ® [ sl ®5725)5, (5.15)
e ,(s)
ualsy) ® _l;_"
s =t -8
1
If we now introduce the notation
Eoem(®) = '/; d’aj(Z A tm(®1752)98)
® © (5.16)
Btmn(®) = 'fs dsa.[ By emn(®17%2)98)

The constitutive equations (5.10) and (5.11) may be written as

Y "%t ot T T R Y Mk (5.17)
where
bto aqo
t & p , m_®p (5.18)
E ki aeu E 8k Bq)k,‘

are the elastic part of the stress and the couple stress and

obes ® 2pf KUM(-) ém(a)ds

[o]
(5.19)

P ™ 2pfo 5mnkl(s) ém,n(s)ds

are the dissipative parts.
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For the linear theory, as shown in Section 3, (5.18)

leads to

t = A 5 +
€. . (u+x)ek‘+pe

E k& 2k

(5.20)

Ekt " %9 .5 ,+8 et %,

Upon putting

2P A m ™ Al(sl’s2)5k£5mn + Aa(sl’sz)skmsln + Aj(sl’sa)aknblm

(5.21)

- 5
20 B e B)(s 58,00, , m ¥ Becsl’sa)srmszn + 33(81’82)5kn5zm

hv(s) ) -.f &2[Al(sl,52)ul

)

u(s) + (s) [ ds [A (s08,)a8
u(s) [ as, [ A (s, ,s )as (5.22)

22
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the dissipative parts of the stress and couple stress take
the forms

Dtkt = f ()\v(s) An_(t—s) 5kl + ‘“v(s) + ev(s)] %‘(t-s)

[s)
+u (s) &, (t-8))as

(5.23)

Ay f (a,(s) v, (t-8) B, +5 () v (t-s)

(o]

+ 7v(8) vy k(‘t‘.-.s)]ds

J
The free energy ¥ takes the form
¥ = E* + D* (5.24)

vhere p Ev is identical to (3.17) and

1 © ® ) i i i
o D* - 5.[/;[}\.1(81,82) ekk(sl) e“(sz) + Az(sl,sz) ek‘(sl) eu(sa)

1

* A (o8) Ey(6)) & (s,) + B(608,) & (105, (s,)
+ By(s,58,) ik,l(sl) a'k,z(°2) (5.25)

+ By(s,,5,)) 6&,;(81) 6z,k(32)]d81d82

and the dissipation inequality (5.14) becomes

23
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2o ] leaterey) Gule)) Epylep) ¢ aleiny) Gyt & (0,
+0,(s,8,) &, (s.) ¢, (5))

+y(s,,8,) 8 (8) 8 () + by(s,08) 8 (o)) & (s)

21 2 2

+dy(s0) 9 (s) @, (s,)as s, > O (5.26)

Compatible with this approximation, for the temperature, we also
take
2}
N (5.27)
]

Equations (5.17), (5.20) and (5.23) are the final forms of
the stress and couple étress for the linear theory of isotropic
micropolar viscoelasticity. The dissipation inequality (5.26)
places restrictions on the viscous moduli appearing in (5.23),
since both ax’bx and kv,uv,xv,av,av and 7v are
expressed in terms of the original six viscoms moduli Ax and
BK (see Eq. 5'.22).

The above results may be summarized in the form of
Theorem 3. Isotropic micfopolar viscoelastic materials defined by

(5.1) that are linear in the past history of motion are thermo-
Gynamically admissible if and only if (a) the free energy ¥ bhas
the form (5.24), (5.25); (b) the stress and couple stress are
given by (5.17), (5.20) and (5.23); (c) these materials are non-
heat conﬁnctgg and possess entropy given by (5.9) and (d) the

2k
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memory functions are restricted by the entropy inequality (5.26).

Corresponding to Theorem 2 we also note that the dissipative
parts of stress, couple stress and the free energy vanish with

the strain measures 'eu and (pk, Pk The difference between the
micropolar viscoelasticity and the classical Boltzmann-Volterra
theory of viscoelasticity arise from the non-symmetrical nature
of stress and the entirely new concept of memory dependent couple
stress. Both are affected by the memory of past global motions
and the micro-rotations. It 1s also clear that the classical
Boltzmann-Volterra theory of viscoelasticity is obtained as a

special case of the present theory.
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6. Micropolar Viscoelastic Fluids

The results of Section 5 can be used to obtain the consti-
tutive equations of viscoelastic fluids. For this all we need
is to replace eu(t) by p-l and drop q;k,‘(t) from the
expression of *o . It then follows that

Etu--'ﬂ'(t)ﬁu

(6.1)
e " O
vhere 7(t) is the pressure defined by
a’ca
mt) = -—3 (6.2)
op :

The expressions (5.23) of DE and . ] remain unchanged. For
the incompressible fluids one replaces w(t) by an unknown

pressure p(t) and adjoins an equation of incompressibility by

v = 0 (6-3)
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7. - Indeterministic Couple Stress Theory

An indeterminate couple stress theory can be obtained by
placing internal constraints on the micropolar motion. For this,

as we have shown earlier [5], sll we need is to set

vhere r 1is the rotation vector defined by

1 :
T " 5 em vm,z (7.2)

Using (7.1) in (5.20) end (5.23) we £ind that
tk.t = A e 8k£ + (2u + k) € s +[ [)\v(s) érr(t-s)
+ [2u () + « (s)]é  (t-s)las (7.3)

vhich are identical to the stress constitutive equations of the
classical Boltzmann-Volterra theory of viscoelasticity provided
we replace u by u+g and pv by uv+Kv/2 . Using (7.3)
in (2.3) we see that the displacement u drops ocut so that (2.3)
detérmines the body couple g . With this viewpoint the present
theory goes into the classical theory.
There is, however, another interpretation: suppose that
in (7.3) t is understood to be the symmetric part t

ke
of the stress tensor where

(k)

1
tag) = 2 (Gt By

)
-3
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and that the skew-symmetric part

k2 ~ tzk)

of the stress is calculated through (2.3), i.e.,

1 v
Yee1 Y2 e Tar,n " p“[u] - “[k,z]) =0

where

Substituting (7.2) into (5.:—:0)2 and (5.23)2 wve get

[
e A lf
"t " 2 %om "nmt T2 Ctun Yn,mx Y2 / (e (8) ey

(7.%)
(7.5)
ﬁh’mk(t-s)

+ 7v(s) € oon ﬁn’mk(t-s)]ds (7.6)

Through (7.4) and (7.6) we have

v4 2 ..
) T Y () * Py gy

Using this we calculate

t = t + €
k£,k (k£),k [k£],k

where for the first term on the right we employ (7.3).

(2.2) now give

28
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Equations
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2
(1+u+g—+£ V)"k,lk"(“*g'z?; v2) Uy ek
- k(8) 7 (s)

+[ (IA(8) + 1 (o) + o+ V2]11k’zk(t-s)

k(=) 7(s) (7.8)
+lufe) + “— - =Tl (te))os

02(1

-8
> Begx ") tP T

g - p(l'% \72);;‘ + %l;;k,zk

vhere Va is the laplacian operator in rectangular coordinates.
Equations (7.8) are the field equations of the indeterminate

couple stress theory of viscoelasticity. We do not place, however,

much faith in the indeterminate couple stress theory.

29
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